Synthesis, Mass Spectrometric Identification, and Crystallography of Osmium Oxide Tetrafluoride

By W. E. FALCONER,* R. D. BURBANK, G. R. JONES, W. A. SUNDER, and M. J. VASILE (Bell Laboratories, Murray Hill, New Jersey 07974)

Summary Osmium oxide tetrafluoride $OsOF_4$ has been prepared in good yield by the reduction of $OsOF_5$ on a hot tungsten filament and has been characterized by chemical analysis, molecular beam mass spectroscopy, and X-ray crystallography.

FEW oxide fluorides of the platinum metals are known.^{1,2a} Although a golden-yellow solid which forms in small yield during preparations of OsF_6 has been assigned^{2b,3} the stoicheiometry $OsOF_4$, osmium oxide tetrafluoride has not been unequivocally identified. We have prepared $OsOF_4$ in good yield by the reduction of $OsOF_5$ on a hot tungsten filament.^{4,5} Static heating of the three elements also gave $OsOF_4$, but with heavy contamination by OsF_5 and an involatile residue.

OsOF₅, prepared by oxyfluorination of osmium metal,⁶ was reduced using a technique similar to that used by Schröder and Grewe^{7,8} for WF₅. OsOF₅ was condensed into a Pyrex reactor⁴ in which was suspended a coil of tungsten wire which could be heated resistively *via* copper rods brazed to Kovar to Pyrex seals. The reactor was immersed either in an ice bath or in a water bath between 10° and 18°, and the wire was heated to a dull red glow for 30—60 min. A grey-green deposit was removed from the reactor walls by scraping in a dry, oxygen-free atmosphere.

Fused samples, analysed with a fluoride ion electrode, gave $F = 26.4 \pm 0.6\%$ (required for $OsOF_4 = 26.9\%$). Other samples which were dissolved in aqueous sodium hydroxide-sodium hypochlorite solutions and subsequently analysed for osmium by X-ray fluorescence gave Os = 66.5 $\pm 1.5\%$ (required for OsOF₄, 67.4%). X-Ray powder photographs of OsOF₄ gave complex patterns indicative of low symmetry. The material did not melt sharply.

Relative abundance of ions from OsOF₄ at 90°, 70 eV electron energy

Ion	Massa	Intensity ^b relative to $OsOF_8^+ = 100$
OsOF ₄ +	284	22
OsF₄+	268	6.6
OsOF _s +	265	100
OsF _s +	249	5.9
OsOF ₂ +	246	42
OsF ₂ +	230	15
$OsOF^+$	227	8.6
OsF^+	211	16
OsO+	208	5.6
Os+	192	21

^a Intensities are compared for ¹⁹²Os mass peaks. Oxyfluoride peaks also contain contributions from ¹⁸⁹Os fluoride ions, for which corrections have been made. ^b Intensities have been adjusted for changes in quadrupole transmission with mass.¹⁰

Crystals of OsOF₄, grown from the vapour at *ca.* 100°, were shown by the X-ray precession method to be orthorhombic: $a = 5 \cdot 56(1)$ Å, $b = 9 \cdot 56(1)$ Å, $c = 12 \cdot 83(2)$ Å, V = 682 Å³, $D_{\rm m} = 5 \cdot 50$ g cm⁻³, Z = 8. The only systematic absences noted among the reflections are h00 for h odd, and 00*l* for *l* odd, leading to the most probable space group $D_3^3 \equiv P2_122_1$. The nonstandard orientation is chosen to indicate the close similarity of the cell constants with those found by Mitchell and Holloway⁹ for OsF₅, despite the substantially different symmetry, $P2_1/c$. Since 17 Å³ per oxygen or fluorine atom are available for both species, the presumption is strong that OsOF₄ also consists of tetramers, but with structure and/or packing different from that in OsF5.

The relative abundances of ions from $OsOF_4$ are given in the Table. To obtain this data, a molecular-beam mass spectrometer was used,¹⁰ with a 0.010 orifice on the effusion source. As expected, the most abundant ion is that in which F^- is lost from the parent molecule, $OsOF_a^+$. This mass spectrum is consistent with those of other transition metal fluorides and oxide fluorides and is that to be expected for OsOF₄.

A careful mass spectrometric search for $OsOF_4$ oligomers showed none to be present; sensitivity for dimeric ions was >1 in 10⁴.

The mass spectrum in conjunction with chemical and physical evidence unequivocally identifies this grey-green compound as OsOF₄. The material dissolves in water to give a black precipitate and a solution which is colourless or slightly grey-blue.

We thank C. L. Luke and E. Bloom, jun. for the chemical analyses.

(Received, 28th June 1972; Com. 1132.)

- ¹ J. H. Canterford and R. Colton, "Halides of the Second and Third Row Transition Metals", Wiley-Interscience, London, 1968.
- ² (a) W. P. Griffith, "The Chemistry of the Rarer Platinum Metals", Wiley-Interscience, London, 1967; (b) *ibid.*, p. 49.
- ⁴G. B. Hargreaves and R. D. Peacock, J. Chem. Soc., 1960, 2618.
 ⁴W. E. Falconer, G. R. Jones, W. A. Sunder, I. Haigh, and R. D. Peacock, J. Inorg. Nuclear Chem., in the press.
 ⁴W. A. Sunder and W. E. Falconer, Inorg. Nuclear Chem. Letters, 1972, 8, 537.
 ⁶J. H. Holloway, H. Selig, and H. H. Claassen, J. Chem. Phys., 1971, 54, 4305.

- ⁹ J. Schröder and F. J. Grewe, Angew. Chem. Internat. Edn., 1968, 7, 132.
 ⁹ J. Schröder and F. J. Grewe, Chem. Ber., 1970, 103, 1536.
 ⁹ S. J. Mitchell and J. H. Holloway, J. Chem. Soc. (A), 1971, 2789.
 ¹⁰ M. J. Vasile, G. R. Jones, and W. E. Falconer, Chem. Comm., 1971, 1355; Internat. J. Mass Spectrometry Ion Phys., in the press.